Contributed Recipes#
Users sometimes share interesting ways of using the Jupyter Docker Stacks.
We encourage users to contribute these recipes to the documentation in case they prove helpful to other community members by submitting a pull request to docs/using/recipes.md
.
The sections below capture this knowledge.
Using sudo
within a container#
Password authentication is disabled for the NB_USER
(e.g., jovyan
).
We made this choice to avoid distributing images with a weak default password that users ~might~ will forget to change before running a container on a publicly accessible host.
You can grant the within-container NB_USER
passwordless sudo
access by adding --user root
and -e GRANT_SUDO=yes
to your Docker command line or appropriate container orchestrator config.
For example:
docker run -it --rm \
--user root \
-e GRANT_SUDO=yes \
jupyter/minimal-notebook
You should only enable sudo
if you trust the user and/or if the container is running on an isolated host.
See Docker security documentation for more information about running containers as root
.
Using mamba install
or pip install
in a Child Docker image#
Create a new Dockerfile like the one shown below.
# Start from a core stack version
FROM jupyter/datascience-notebook:2023-02-28
# Install in the default python3 environment
RUN pip install --no-cache-dir 'flake8==3.9.2' && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
Then build a new image.
docker build --rm -t jupyter/my-datascience-notebook .
To use a requirements.txt file, first, create your requirements.txt
file with the listing of
packages desired.
Next, create a new Dockerfile like the one shown below.
# Start from a core stack version
FROM jupyter/datascience-notebook:2023-02-28
# Install from the requirements.txt file
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
RUN pip install --no-cache-dir --requirement /tmp/requirements.txt && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
For conda, the Dockerfile is similar:
# Start from a core stack version
FROM jupyter/datascience-notebook:2023-02-28
# Install from the requirements.txt file
COPY --chown=${NB_UID}:${NB_GID} requirements.txt /tmp/
RUN mamba install --yes --file /tmp/requirements.txt && \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
Ref: docker-stacks/commit/79169618d571506304934a7b29039085e77db78c
Add a custom conda environment and Jupyter kernel#
The default version of Python that ships with the image may not be the version you want. The instructions below permit adding a conda environment with a different Python version and making it accessible to Jupyter.
# Choose your desired base image
FROM jupyter/minimal-notebook:latest
# name your environment and choose the python version
ARG conda_env=python37
ARG py_ver=3.7
# you can add additional libraries you want mamba to install by listing them below the first line and ending with "&& \"
RUN mamba create --yes -p "${CONDA_DIR}/envs/${conda_env}" python=${py_ver} ipython ipykernel && \
mamba clean --all -f -y
# alternatively, you can comment out the lines above and uncomment those below
# if you'd prefer to use a YAML file present in the docker build context
# COPY --chown=${NB_UID}:${NB_GID} environment.yml "/home/${NB_USER}/tmp/"
# RUN cd "/home/${NB_USER}/tmp/" && \
# mamba env create -p "${CONDA_DIR}/envs/${conda_env}" -f environment.yml && \
# mamba clean --all -f -y
# create Python kernel and link it to jupyter
RUN "${CONDA_DIR}/envs/${conda_env}/bin/python" -m ipykernel install --user --name="${conda_env}" && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# any additional pip installs can be added by uncommenting the following line
# RUN "${CONDA_DIR}/envs/${conda_env}/bin/pip" install --no-cache-dir
# if you want this environment to be the default one, uncomment the following line:
# RUN echo "conda activate ${conda_env}" >> "${HOME}/.bashrc"
Dask JupyterLab Extension#
Dask JupyterLab Extension provides a JupyterLab extension to manage Dask clusters, as well as embed Dask’s dashboard plots directly into JupyterLab panes. Create the Dockerfile as:
# Start from a core stack version
FROM jupyter/scipy-notebook:latest
# Install the Dask dashboard
RUN pip install --no-cache-dir dask-labextension && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# Dask Scheduler & Bokeh ports
EXPOSE 8787
EXPOSE 8786
ENTRYPOINT ["jupyter", "lab", "--ip=0.0.0.0", "--allow-root"]
And build the image as:
docker build -t jupyter/scipy-dasklabextension:latest .
Once built, run using the command:
docker run -it --rm \
-p 8888:8888 \
-p 8787:8787 jupyter/scipy-dasklabextension:latest
Let’s Encrypt a Notebook server#
See the README for a basic automation here jupyter/docker-stacks which includes steps for requesting and renewing a Let’s Encrypt certificate.
Slideshows with Jupyter and RISE#
RISE allows via an extension to create live slideshows of your notebooks, with no conversion, adding javascript Reveal.js:
# Add Live slideshows with RISE
RUN mamba install --yes -c damianavila82 rise && \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
Credit: Paolo D. based on docker-stacks/issues/43
xgboost#
You need to install conda-forge’s gcc for Python xgboost to work correctly. Otherwise, you’ll get an exception about libgomp.so.1 missing GOMP_4.0.
mamba install --yes gcc && \
mamba clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
pip install --no-cache-dir xgboost && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# run "import xgboost" in python
Running behind an nginx proxy#
Sometimes it is helpful to run the Jupyter instance behind an nginx proxy, for example:
you would prefer to access the notebook at a server URL with a path (
https://example.com/jupyter
) rather than a port (https://example.com:8888
)you may have many services in addition to Jupyter running on the same server and want nginx to help improve server performance in managing the connections
Here is a quick example of NGINX configuration to get started.
You’ll need a server, a .crt
and .key
file for your server, and docker
& docker-compose
installed.
Then download the files at that gist and run docker-compose up -d
to test it out.
Customize the nginx.conf
file to set the desired paths and add other services.
Host volume mounts and notebook errors#
If you are mounting a host directory as /home/jovyan/work
in your container,
and you receive permission errors or connection errors when you create a notebook,
be sure that the jovyan
user (UID=1000
by default) has read/write access to the directory on the host.
Alternatively, specify the UID of the jovyan
user on container startup using the -e NB_UID
option
described in the Common Features, Docker Options section
Manpage installation#
Most containers, including our Ubuntu base image, ship without manpages installed to save space. You can use the following Dockerfile to inherit from one of our images to enable manpages:
# Choose your desired base image
ARG BASE_CONTAINER=jupyter/datascience-notebook:latest
FROM $BASE_CONTAINER
USER root
# `/etc/dpkg/dpkg.cfg.d/excludes` contains several `path-exclude`s, including man pages
# Remove it, then install man, install docs
RUN rm /etc/dpkg/dpkg.cfg.d/excludes && \
apt-get update --yes && \
dpkg -l | grep ^ii | cut -d' ' -f3 | xargs apt-get install --yes --no-install-recommends --reinstall man && \
apt-get clean && rm -rf /var/lib/apt/lists/*
USER ${NB_UID}
Adding the documentation on top of the existing single-user image wastes a lot of space
and requires reinstalling every system package,
which can take additional time and bandwidth.
The datascience-notebook
image has been shown to grow by almost 3GB when adding manpages in this way.
Enabling manpages in the base Ubuntu layer prevents this container bloat.
To achieve this, use the previous Dockerfile
’s commands with the original ubuntu
image as your base container:
ARG BASE_CONTAINER=ubuntu:22.04
For Ubuntu 18.04 (bionic) and earlier, you may also require to a workaround for a mandb bug, which was fixed in mandb >= 2.8.6.1:
# https://git.savannah.gnu.org/cgit/man-db.git/commit/?id=8197d7824f814c5d4b992b4c8730b5b0f7ec589a
# https://launchpadlibrarian.net/435841763/man-db_2.8.5-2_2.8.6-1.diff.gz
RUN echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/man" >> /etc/manpath.config && \
echo "MANPATH_MAP ${CONDA_DIR}/bin ${CONDA_DIR}/share/man" >> /etc/manpath.config && \
mandb
Be sure to check the current base image in base-notebook
before building.
JupyterHub#
We also have contributed recipes for using JupyterHub.
Use JupyterHub’s dockerspawner#
In most cases for use with DockerSpawner, given an image that already has a notebook stack set up, you would only need to add:
install the jupyterhub-singleuser script (for the correct Python version)
change the command to launch the single-user server
Swapping out the FROM
line in the jupyterhub/singleuser
Dockerfile should be enough for most
cases.
Credit: Justin Tyberg, quanghoc, and Min RK based on docker-stacks/issues/124 and docker-stacks/pull/185
Containers with a specific version of JupyterHub#
To use a specific version of JupyterHub, the version of jupyterhub
in your image should match the
version in the Hub itself.
FROM jupyter/base-notebook:2023-02-28
RUN pip install --no-cache-dir jupyterhub==1.4.1 && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
Credit: MinRK
Spark#
A few suggestions have been made regarding using Docker Stacks with spark.
Using PySpark with AWS S3#
Using Spark session for Hadoop 2.7.3
import os
# !ls /usr/local/spark/jars/hadoop* # to figure out what version of Hadoop
os.environ[
"PYSPARK_SUBMIT_ARGS"
] = '--packages "org.apache.hadoop:hadoop-aws:2.7.3" pyspark-shell'
import pyspark
myAccessKey = input()
mySecretKey = input()
spark = (
pyspark.sql.SparkSession.builder.master("local[*]")
.config("spark.hadoop.fs.s3a.access.key", myAccessKey)
.config("spark.hadoop.fs.s3a.secret.key", mySecretKey)
.getOrCreate()
)
df = spark.read.parquet("s3://myBucket/myKey")
Using Spark context for Hadoop 2.6.0
import os
os.environ[
"PYSPARK_SUBMIT_ARGS"
] = "--packages com.amazonaws:aws-java-sdk:1.10.34,org.apache.hadoop:hadoop-aws:2.6.0 pyspark-shell"
import pyspark
sc = pyspark.SparkContext("local[*]")
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
hadoopConf = sc._jsc.hadoopConfiguration()
myAccessKey = input()
mySecretKey = input()
hadoopConf.set("fs.s3.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoopConf.set("fs.s3.awsAccessKeyId", myAccessKey)
hadoopConf.set("fs.s3.awsSecretAccessKey", mySecretKey)
df = sqlContext.read.parquet("s3://myBucket/myKey")
Using Local Spark JARs#
import os
os.environ[
"PYSPARK_SUBMIT_ARGS"
] = "--jars /home/jovyan/spark-streaming-kafka-assembly_2.10-1.6.1.jar pyspark-shell"
import pyspark
from pyspark.streaming.kafka import KafkaUtils
from pyspark.streaming import StreamingContext
sc = pyspark.SparkContext()
ssc = StreamingContext(sc, 1)
broker = "<my_broker_ip>"
directKafkaStream = KafkaUtils.createDirectStream(
ssc, ["test1"], {"metadata.broker.list": broker}
)
directKafkaStream.pprint()
ssc.start()
Using spark-packages.org#
If you’d like to use packages from spark-packages.org, see https://gist.github.com/parente/c95fdaba5a9a066efaab for an example of how to specify the package identifier in the environment before creating a SparkContext.
Use jupyter/all-spark-notebooks with an existing Spark/YARN cluster#
FROM jupyter/all-spark-notebook
# Set env vars for pydoop
ENV HADOOP_HOME /usr/local/hadoop-2.7.3
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64
ENV HADOOP_CONF_HOME /usr/local/hadoop-2.7.3/etc/hadoop
ENV HADOOP_CONF_DIR /usr/local/hadoop-2.7.3/etc/hadoop
USER root
# Add proper open-jdk-8 not the jre only, needed for pydoop
RUN echo 'deb https://cdn-fastly.deb.debian.org/debian jessie-backports main' > /etc/apt/sources.list.d/jessie-backports.list && \
apt-get update --yes && \
apt-get install --yes --no-install-recommends -t jessie-backports openjdk-8-jdk && \
rm /etc/apt/sources.list.d/jessie-backports.list && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \
# Add Hadoop binaries
wget https://mirrors.ukfast.co.uk/sites/ftp.apache.org/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz && \
tar -xvf hadoop-2.7.3.tar.gz -C /usr/local && \
chown -R "${NB_USER}:users" /usr/local/hadoop-2.7.3 && \
rm -f hadoop-2.7.3.tar.gz && \
# Install os dependencies required for pydoop, pyhive
apt-get update --yes && \
apt-get install --yes --no-install-recommends build-essential python-dev libsasl2-dev && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \
# Remove the example hadoop configs and replace
# with those for our cluster.
# Alternatively, this could be mounted as a volume
rm -f /usr/local/hadoop-2.7.3/etc/hadoop/*
# Download this from ambari/cloudera manager and copy it here
COPY example-hadoop-conf/ /usr/local/hadoop-2.7.3/etc/hadoop/
# Spark-Submit doesn't work unless I set the following
RUN echo "spark.driver.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/conf/spark-defaults.conf && \
echo "spark.yarn.am.extraJavaOptions -Dhdp.version=2.5.3.0-37" >> /usr/local/spark/conf/spark-defaults.conf && \
echo "spark.master=yarn" >> /usr/local/spark/conf/spark-defaults.conf && \
echo "spark.hadoop.yarn.timeline-service.enabled=false" >> /usr/local/spark/conf/spark-defaults.conf && \
chown -R "${NB_USER}:users" /usr/local/spark/conf/spark-defaults.conf && \
# Create an alternative HADOOP_CONF_HOME so we can mount as a volume and repoint
# using ENV var if needed
mkdir -p /etc/hadoop/conf/ && \
chown "${NB_USER}":users /etc/hadoop/conf/
USER ${NB_UID}
# Install useful jupyter extensions and python libraries like :
# - Dashboards
# - PyDoop
# - PyHive
RUN pip install --no-cache-dir jupyter_dashboards faker && \
jupyter dashboards quick-setup --sys-prefix && \
pip2 install --no-cache-dir pyhive pydoop thrift sasl thrift_sasl faker && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
USER root
# Ensure we overwrite the kernel config so that toree connects to cluster
RUN jupyter toree install --sys-prefix --spark_opts="\
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1 \
--driver-java-options \
-Dhdp.version=2.5.3.0-37 \
--conf spark.hadoop.yarn.timeline-service.enabled=false \
"
USER ${NB_UID}
Credit: britishbadger from docker-stacks/issues/369
Run Jupyter Notebook/Lab inside an already secured environment (i.e., with no token)#
(Adapted from issue 728)
The default security is very good.
There are use cases, encouraged by containers, where the jupyter container and the system it runs within lie inside the security boundary.
It is convenient to launch the server without a password or token in these use cases.
In this case, you should use the start.sh
script to launch the server with no token:
For JupyterLab:
docker run -it --rm \
jupyter/base-notebook:2023-02-28 \
start.sh jupyter lab --LabApp.token=''
For jupyter classic:
docker run -it --rm \
jupyter/base-notebook:2023-02-28 \
start.sh jupyter notebook --NotebookApp.token=''
Enable nbextension spellchecker for markdown (or any other nbextension)#
NB: this works for classic notebooks only
# Update with your base image of choice
FROM jupyter/minimal-notebook:latest
USER ${NB_UID}
RUN pip install --no-cache-dir jupyter_contrib_nbextensions && \
jupyter contrib nbextension install --user && \
# can modify or enable additional extensions here
jupyter nbextension enable spellchecker/main --user && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
Enable Delta Lake in Spark notebooks#
Please note that the Delta Lake packages are only available for Spark version > 3.0
.
By adding the properties to spark-defaults.conf
, the user no longer needs to enable Delta support in each notebook.
FROM jupyter/pyspark-notebook:latest
ARG DELTA_CORE_VERSION="1.2.1"
RUN pip install --no-cache-dir delta-spark==${DELTA_CORE_VERSION} && \
fix-permissions "${HOME}" && \
fix-permissions "${CONDA_DIR}"
USER root
RUN echo 'spark.sql.extensions io.delta.sql.DeltaSparkSessionExtension' >> "${SPARK_HOME}/conf/spark-defaults.conf" && \
echo 'spark.sql.catalog.spark_catalog org.apache.spark.sql.delta.catalog.DeltaCatalog' >> "${SPARK_HOME}/conf/spark-defaults.conf"
USER ${NB_UID}
# Trigger download of delta lake files
RUN echo "from pyspark.sql import SparkSession" > /tmp/init-delta.py && \
echo "from delta import *" >> /tmp/init-delta.py && \
echo "spark = configure_spark_with_delta_pip(SparkSession.builder).getOrCreate()" >> /tmp/init-delta.py && \
python /tmp/init-delta.py && \
rm /tmp/init-delta.py
Add Custom Fonts in Scipy notebook#
The example below is a Dockerfile to load Source Han Sans with normal weight, usually used for the web.
FROM jupyter/scipy-notebook:latest
RUN PYV=$(ls "${CONDA_DIR}/lib" | grep ^python) && \
MPL_DATA="${CONDA_DIR}/lib/${PYV}/site-packages/matplotlib/mpl-data" && \
wget --quiet -P "${MPL_DATA}/fonts/ttf/" https://mirrors.cloud.tencent.com/adobe-fonts/source-han-sans/SubsetOTF/CN/SourceHanSansCN-Normal.otf && \
sed -i 's/#font.family/font.family/g' "${MPL_DATA}/matplotlibrc" && \
sed -i 's/#font.sans-serif:/font.sans-serif: Source Han Sans CN,/g' "${MPL_DATA}/matplotlibrc" && \
sed -i 's/#axes.unicode_minus: True/axes.unicode_minus: False/g' "${MPL_DATA}/matplotlibrc" && \
rm -rf "/home/${NB_USER}/.cache/matplotlib" && \
python -c 'import matplotlib.font_manager;print("font loaded: ",("Source Han Sans CN" in [f.name for f in matplotlib.font_manager.fontManager.ttflist]))'
Enable clipboard in pandas on Linux systems#
Additional notes
This solution works on Linux host systems.
It is not required on Windows and won't work on macOS.
To enable the pandas.read_clipboard()
functionality, you need to have xclip
installed
(installed in minimal-notebook
and all the inherited images)
and add these options when running docker
: -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix
, i.e.:
docker run -it --rm \
-e DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix \
jupyter/minimal-notebook
Add ijavascript kernel to container#
The example below is a Dockerfile to install the ijavascript kernel.
# use one of the Jupyter Docker Stacks images
FROM jupyter/scipy-notebook:2023-02-28
# install ijavascript
RUN npm install -g ijavascript
RUN ijsinstall
Add Microsoft SQL Server ODBC driver#
The following recipe demonstrates how to add functionality to read from and write to an instance of Microsoft SQL server in your notebook.
ARG BASE_IMAGE=jupyter/tensorflow-notebook
FROM $BASE_IMAGE
USER root
ENV MSSQL_DRIVER "ODBC Driver 18 for SQL Server"
ENV PATH="/opt/mssql-tools18/bin:${PATH}"
RUN apt-get update --yes && \
apt-get install --yes --no-install-recommends gnupg2 && \
wget -qO- https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > /usr/share/keyrings/microsoft.gpg && \
apt-get purge --yes gnupg2 && \
echo "deb [arch=amd64,armhf,arm64 signed-by=/usr/share/keyrings/microsoft.gpg] https://packages.microsoft.com/ubuntu/22.04/prod jammy main" > /etc/apt/sources.list.d/microsoft.list && \
apt-get update --yes && \
ACCEPT_EULA=Y apt-get install --yes --no-install-recommends msodbcsql18 && \
apt-get clean && rm -rf /var/lib/apt/lists/*
# Switch back to jovyan to avoid accidental container runs as root
USER ${NB_UID}
RUN pip install --no-cache-dir pyodbc
You can now use pyodbc
and sqlalchemy
to interact with the database.
Pre-built images are hosted in the realiserad/jupyter-docker-mssql repository.